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We present a new numerical method for calculating an evolving
2D Hele-Shaw interface when surface tension effects are neglected.
In the case where the flow is directed from the less viscous fluid
into the more viscous fluid, the motion of the interface is ill-posed;
small deviations in the initial condition will produce significant
changes in the ensuing motion. This situation is disastrous for nu-
merical computation, as small roundoff errers can quickly lead to
farge inacecuracies in the computed solution. Our method of compu-
tation is most easily formulated using a conformal map from the
fluid domain into a unit disk. The method relies on analytically
continuing the initial data and equations of motion into the region
extarior to the disk, where the evolution problem becomes well-
posed. The equations are then numerically solved in the extended
domain. The presence of singularities in the conformal map outside
of the disk introduces specific structures along the fluid interface.
Our method can explicitly track the location of isolated pole and
branch point singularities, allowing us to draw cannections between
the development of interfacial patterns and the motion of singulari-
ties as they approach the unit disk. In particular, we are able to
relate physical features such as finger shape, side-branch formation,
and competition between fingers to the nature and location of the
singularities. The usefulness of this method in stiudying the forma-
tion of topological singularities {self-interseclions of the interface}

is also pointed out. 4 1995 Aeademic Press, Inc.

1. INTRODUCTION

The displacement of a viscous fiuid by a less viscous fluid
in a Hele—Shaw cell has been the subject of intense investigation
over the last decade, mainly due to newly discovered mathemat-
ical analogies with dendritic crystal growth, directional solidi-
fication, and electro-chemical growth. The original motivation
behind the pioneering work of Saffinan and Taylor [36] was
the analogy to displacement in porous medium. Reviews by
Saffman [38], Bensimon, Kadanoff, Liang, Shraiman, and Tang
|5]. and Homsy [16] summarize the state of affairs as of the
ntid-eighties, while some of the more recent developments are
reviewed by Pelce [31], Kessler, Koplik, and Levine {22], How-
ison |21}, and Tanveer [42] from a range of different perspec-
tives.

In this paper, we shall limit our investigations to channel
flow, although our numerical method is quite general and can
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be applied to cther geometries. The advantage of this restriction
is that our description can be specific. Moreover, the phenomena
displayed in channel flow have been studied extensively and
are representative of other Hele-Shaw flows.

A steadily advancing flat interface in a channel is unstable
to perturbations when driven by the less viscous fluid. The
perturbations grow into fingers, but the subsequent behavior
depends on the relative strength of capillary effects, measured
by the dimensionless number B = ab*/(12uVa?). Here o is the
surface tension cocfficient, b is the gap width of the cell, a is
the channel width, V is the speed of displacement well in front
of the interface, and p is the viscosity of the more viscous {luid

‘(the viscosity of the less viscous fluid is assumed negligible).

Numerical computations by Tryggvasan and Aref [45, 46], De
Gregoria and Schwartz [9], Bensimon [6], and Meiburg and
Homsy [27] show competition between fingers resulting in the
emergence of a single steady finger, provided B is greater than
about 0.0004"' (but not greater than 8. = 0.025 otherwise the
interface is stabilized by capillary effects). For still smaller 8,
DeGregoria and Schwartz {9, 10] and Bensimon 6] find that
the finger spontancously splits; this can be induced for higher
values of B by introducing perturbations at the tip, even with
small ainplitude. Experiments also reveal the emergence of tip
splitting and side-branching instabilities (Park and Homsy [28],
Tabeling, Zocchi, and Libchaber [41]). Bensimon {6] provides
numerical evidence supporting heuristic arguments that the size
of the perturbation triggering instability decreases with B. The
computations of Dai and Shelley [8] (in the circular geometry)
also show great sensitivity to the level of numerical precision
when the surface tension coefficient is small. For small enough
B, even noise during experiments can be large enough to set
off a pattern of continual tip-splitting and finger competition
(Maxworthy [26], Arneodo, Couder, Grasseau, Hakim, and Ra-
baud |2]). Indeed. when capillary effects are very small, it
appears that the pattern is fractal (Maxworthy [26], Kopf-Sill
and Homsy [23], Arncodo et al. {2]).

'"There is a range in 8, depending on the level of noise in an experiment
or numerical calculation, in which a transition occurs between steadily moving
fingers and continual unsteady motion, A typieal range is 0,0005 = £ > 0.0002.
We have taken 0.0004 as a representative value,
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FIG. 1. The unit semi-circle in the ¢ plane is mapped inte the viscous
fluid region of the channel, with the circular arc being mapped to the interface.
The points A, B, and C in the { plane are mapped to the corresponding points
in the channel.

Detailed understanding of this unsteady behavior is limited.
In particular, the numerical work has not produced a clear
understanding of the asymptotic trends as B — (). Unfortunately,
the inclusion of surface tension in the usual mathematical model
makes theoretical studies very difficult. Instead, a large body
of knowledge has been developed for the initial-value problem
when B = 0. For example, Gustaffson [13, 14] has rigorously
proved the existence for a solution of finite time starting with
analytic initial data. Earlier, Galin [11] and Polubarinova-
Kochina [32] considered the mathematically identical problem
of the Darcy model for ground water flow and devised analytical
techniques to obtain exact solutions for a class of initial condi-
tions. These were apparently well known in the Russian litera-
ture (see Hohlov [15] and Howison [21]). Exact solutions due
to Saffman [37], Howison [18-20] and Shraiman and Bensimon
[39] can be seen as applications of these techniques although
these results were obtained without knowledge of the earlier
Russian work. Howison [21] summarizes the relation between
the different techniques. Within the class of known exact solu-
tions, there are finger patterns that exist for all times and exhibit
behavior similar to experimental observation (Patterson [30]).
Further, there are solutions (Shraiman and Bensimon [39]) that
exist only for a finite time and culminate in a zero angled cusp
at the interface. Howison [19] uses the class of unknown exact
solutions to point out that the initial-value problem is ill-posed,;
itis possible to choose an initial condition for which the solution
exists for all times, whereas there is a neighboring initial condi-
tion for which the interface develops a cusp after a finite time.

In essence, these theoretical results use a conformal map
7(Z, t) which maps the interior of a unit semi-circle in the ¢
plane to the physical flow domain of a channel (see Fig. 1).
The location of the free surface at a time f is given by

349

20 =6, 1) + iv(0, 1) for £ = €* on the arc of the semi-
circle. The equation for the evolution of (x(8, 1), y(8, 1)) results
from the usual application of the kinematic and dynamic condi-
tions at the interface. The symmetry in the problem allows us
to reflect the solution about the real axis. In essence, we include
a mirror image of the channel so that the interface may be
considered periodic. Thus, the conformal map must be analvtic
inside the unit disk, aside from a logarithmic singularity at
£ =0, but it may have singularities and zeros outside it. These
can move towards the boundary of the unit disk, |Z] = 1. In
particular, zeros may reach the boundary in finite time, causing
acusp to form on the interface. The origin of ill-posedness, then,
1s that small perturbations can introduce a zero or a singularity in
Zy near the unit disk, which subsequently moves towards it and
reaches it quickly. Following the work of Richardson [35] and
Lacey [25], Tanveer [43] showed that all singularities, no matter
what type, will move towards the unit disk, while preserving
their type. Indeed, we surmise that roundoff error in traditional
numerical calculations introduces singularities at some distance
from |£| = 1; these subsequently approach the unit disk and
lead to the random pattern of tip-splitting, side-branching, and
finger competition seen in computations for increasingly
small B.

Ideally, one would like to understand the Hele—Shaw dynam-
ics for a small non-zero B perturbatively, thus exploiting the
simpler B = 0 case. There are several hurdles in accomplishing
this. One is the ill-posedness of the B = 0 problem in the
physical domain |£| = 1. Another is the fact that information
inthe B = 0 problem is not complete. We do not have an exact
solution to the general initial value problem, nor do we have
a detailed understanding of the motion of singularities. Further-
more, it is not known how to numerically compute solutions
to the B = 0 problem effectively. Conventional numerical simu-
lation in the physical flow domain |¢| = 1 suffers from uncon-
trolled growth of roundoff errors (see Aitchison and Howison
[1]). Employing a filtering procedure such as that used by
Krasny [24] in the Kelvin—Helmholtz instability (another ill-
posed problem) allows simulations in the physical domain to
proceed. Still, as is demonstrated by Dai and Shelley [8], the
choice of paramelterization has a strong effect on the accuracy
of the computation. Moreover, a good parameterization is very
dependent upon the initial data. For data with a general collec-
tion of zeros and singularities, reliable long time calculations
in the physical domain become extremely difficult.

In a recent development, Tanveer [43] has been able to
demonstrate that analytically extending the initial value prob-
lem for z({, #) into the region exterior to the unit disk leads to
a well-posed evolution problem. It is important to note that
when the initial interface location is known only to a finite
precision, initial data z({, 0) in the extended region || > 1
cannot be obtained in a well-posed manner. In effect, the ill-
posedness of the dynamics is transferred to the ill-posedness
of extending the data from |{| = 1 to [{] > 1. Nevertheless,
when data s specified in |{| > 1 (say, with z(Z, 0) given
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in closed form) the interface evolves without sensitivity to
initial conditions.

Tanveer’s observation addresses the first hurdle menticned
above. In this paper, we address the second hurdle by presenting
a numerical method which efficiently solves the initial value
problem in the expanded domain when B = (). Our work extends
the method, developed by Baker and Tanveer [4], to include
the trajectories of singularities of the form

2~ AL — L, a#0,1,2, .., (1)
explicitly in the complex-{ plane when B = 0. Thus we are
able to assess directly the impact of the close approach of pole
and branch point singularities to |{| = |. We do find that
singularities induce tip-splitting and side-branching and that the
relative strength of the singularities controls finger competition.
Moreover, our studies draw connections between the parameters
specifying the singularities and the resulting physical behavior.
In other words, for given initial data we are able to predict the
outcome from knowledge about the initial singularities in
|g} > 1. Within this framework, comparisons with experimen-
tally observed features are possible by studying a random en-
semble of initial conditions in |£| > 1, subject to the constraint
that they describe the same initia] interface, up to some “‘experi-
mental’” error,

Beside the explicit treatment of singulanities, there is another
crucial ingredient in our method. An analytic function, such as
a conformal map, is determined completely by its values on
a closed curve, Instead of advancing the conformal map on
|| = 1 in time as in standard boundary integral methods, our
method advances the conformal map on a much larger circle,
The interpolation of the conformal map to |[¢| = 1 is then a
well-posed operation. In essence, knowledge of the conformal
map on a much larger circle corresponds to knowledge of the
conformal map on |£] = 1 to a higher degree of precision. In
contrast, extrapolation of the conformal map to a larger circle
is an ill-posed operation, an operation not to be attempted
numerically. Since our method uses the discrete Fourier trans-
form to evaluate Laurent series, our results are spectrally accu-
rate and can be performed in O(N log N) operations, Further-
more, explicit treatment of the nearest singularities helps avoid
point crowding typical of conformal maps.

There are several limitations to our method. First, there is
the matter of the initial data, We require that all singularities
of z; in the extended domain be isolated branch points or poles.
This rules out some types of initial data; for example, structures
such as natural boundaries or essential singuiarities are not
allowed in the extended domain. Nevertheless, the kinds of
data we do allow produce a wide range of interfacial features
such as tip-splitting, side-branching, and finger competition
which are similar to experimental observations.

The second limitation is that, at present, our method is re-
stricted to the zero surface tension problem. Given this, it is
important to discuss the relationship between B = 0 solutions
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and those for B > 0. The well-posed formulation of the B =
0 problem allows the effects of small surface tension to be
addressed perturbatively. It turns out that, at the initial time,
surface tension is a regular perturbation except in the neighbor-
hood of zeros and certain singularities of z,. Tanveer |43]
has examined the effect of small surface tension on isolated
singularities in the initial data of the form (1).? Capillary effects
on singularities with a = —$ cause only a regular perturbation.
Their powers are unchanged but their speed and strengths A(r)
are modified slightly by terms proportional to B. Singularities
with —% < @ < —3 are immediately transformed into a localized
cluster of —3% branch point singularities, although the behavior
(1) is stili relevant in an outer asymptotic sense. Thus, for
times much less than |/B the interface behaves as though it is
unaffected by surface tension, provided these singularities do
not come within a distance O(B"®"*) from |{| = 1 and zeros
in z; are far from the unit disk.? For initial conditions with zeros
present, recent evidence [40] shows that small surface tension
effects can significantly perturb the interface in O(1) time. This
can happen even when the zeros do not impinge on the unit
disk. The surface tension effects occur in predictable ways
when a localized cluster of ~3 singularities created out of an
initial zero {termed daughter singularity by Tanveer [43]) come
within an O(B"?) neighborhood of the unit disk. However, there
are initial conditions for which daughter singularity effects do
not oceur in O(1) time. Our computations determine the leading
order interfacial shapes in such cases. Perhaps more impor-
tantly, the method presented here provides a means to determine
if and when the zero surface tension evolution of the interface
deviates from the small surface tension evolution.

In the next section, we describe the equations upon which
our method is based. The explicit treatment of singularities is
discussed in Section 3. Then we describe the numerical method
in Section 4. In Section 5, we present tests of our method, and
some typical results. Our conclusions are discussed in Section 6.

2. THE EQUATIONS OF MOTION

In this section we present the equations which govern interfa-
cial flow in a Hele—Shaw cell without the details of their deriva-
tion. We will follow closely the formulation in Tanveer {43].
Our discussion will be limited to flow in the channel geometry.
For the equivalent formulation in a radial geometry, see Tan-
veer [43].

Consider a Hele—Shaw cell of infinite length and finite width
a in which air of negligible viscosity is pushing a viscous,
incompressible liquid. Introduce the conformal map z(Z, ¢)
which takes the interior of a unit semi-circle in the ¢ plane into
the viscous fluid region of the channel, which lies in the z
plane. The circular are |£| = 1 is mapped to the interface, and

2 Qur use of & for the power corresponds to Tanveer’s [43] choice of —8.
? When singularities are initially € (1) distance from the unit disk, they can
move to within O (B2} in O(ln B™") time.
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the diameter is mapped to the channel walls. A schematic of
the mapping is provided in Fig. 1. Note that we set the width
a =2

The functional form of the conformal map is given by

W= *%ln i+ fig,n, 2)

where fis analytic in an open set which contains the unit semi-
circle. The analyticity of f on the circular arc guarantees the
smoothness of the inteface. We require that

Im{f}=0 (3)

on the real diameter of the semi-circle to satisfy the condition
that z maps this diameter to the channel walls, In addition, we
assume that z, # 0 in a region containing the unit semi-circle.
The Schwartz reflection principle then implies that £ is analytic
and z; # 0 for || = 1.

The fluid velocity u, averaged across the plate gap, satisfies
Darcy’s law

U=E;Vp,

where p is the viscosity, b is the plate gap, and p is the pressure
{here considered as a function of x and y). Thus (—#*/12u)p
provides a velocity potential ¢. Incompressibility implies the
existence of a stream function 4. We can therefore introduce
a complex potential function W(z, 1) = ¢(z, ) + ii(z, 1) which
is an analytic function of z in the fluid region of the channel.
Considered as a function of £, this potential is decomposed as

W, n= —%ln IHi+tw(lf), (4

where e is assumed to be analytic in unit semi-circle, implying
(via the Schwartz reflection principle) its analyticity for || =
1. In (4) the velocity at infinity is assumed to be I; together
with a = 2, this choice makes our variables effectively dimen-
sionless. The relation

Im{w}=0 (5)

is required 1o hold on the real diameter of § and is the mathemati-
cal statement of the condition that there is no flow through
the walls.

The interfacial conditions will determine the evolution of
the map z({, r). The kinematic condition states that normal
component of the fluid velogity is continuous across the inter-
face and implies that on |{] = 1
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Re {i - Qﬂ’} =0. 6)

{z; ‘Zglz

Details of the derivation of this equation are available in Saff-
man [37] and Richardson [35]. In the absence of capillary
effects, the dynamic condition requires continuity of pressure
across the interface. When the viscosity of the less viscous
fluid is negligible, this condition gives

Re{w}=0 )]

on |¢{| = 1. We note in passing that a more complete description
of Hele-Shaw flow introduces more complicated interfacial
conditions due to a thin film left behind by an advancing inter-
face. However, several numerical [29], {33, 34] and analytic
[44] studies have shown that many salient features of interfacial
motion described by the more detailed model are captured by
the simpler interfacial conditions (6)-(7).

From (5) and (7) it is immediately apparent that @ = 0 for
all £ in the complex plane. Thus, (6) becomes

{7, i

In order to extend (8) into the region |£] > 1, we first provide
an analytic extension of the conjugate of an analytic function
evalvated on || = L. Let

)

F(O)=2 al

=0

be an analytic function in || = 1. Then
Fo =2 al ©

is analytic in |£] = 1, where the overbar denotes complex
conjugation. For functions that are not necessarily analytic at
the origin, though analytic on a segment of [¢] = 1, we can
generalize the above definition of F({) through the relation
F(Q) = F(O). F(1/{) is then the analytic extension of F from
|¢] = 1. It follows that

Re {F()} = 3 [F() + F(1/0)] (10
for ¢ = ™. In addition, |F({)[* = F(OF (/) on § = €.
Thus (8) can be written as

“N___ 2
Re{z_zg}“ 7 2dd DZAUIL D) an
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The continuation of Eq. (11) into the domain |{| < 1 can
now be obtained in a straightforward manner by employing the
Poisson integral formula, Tn particular, we use a variant of the
standard formula which gives the value of an analytic function
in the domain |¢| = 1 in terms of its real part evaluated on the
unit circle. Application of the formula to the function z/({z;)
yields (with appropriate choice of imaginary constant)

-
E; =I{{ 1) (12)
for |£] < 1, where
__1 1 r+d
e MRt e s

Equation (12) can be analytically continued into the domain
|¢] > 1 by deforming the contour in the usual way, producing
an additional term from the residue of the pole at /. Conse-
quently, we have

2{

L= {Z;j(g,t) - 772{(1/4[)

(14)

for |£] > 1. Note that /(¢ ¢} defines different analytic functions
in |{] < 1and|Z] > 1.

A useful alternative form for (14) may be obtained by em-
ploying {10) 1o write (8) as

o ity 2
b - . 15
Loz 1)

Since z,(1/¢) and z,(1/¢) are analytic in |¢| > 1, this equation
provides us with a second expression for /(¢ t),

)

Ien==<en

(16)

when [¢| > L.
In order to make the structure of (12) and (14) more appar-
ent, define '

G = ¢, 1) (17
_ =2
qz-zg(”g,)- (18)
Then (12) becomes
= qiz;=0 (19)

for || < 1, and (14) becomes
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L= qi=q (20
for {¢| > 1. These equations, corresponding to Eqs. (3.1) and
{3.3) of Tanveer [43], have the advantage over (8) of allowing
studies of the presence and influence of singularities of z; in
|¢] > 1. Furthermore, they lead to the development of a new
numerical procedure for calenlating interfacial motion in a well-
posed fashion for a restricted class of initial conditions.

Since /(. 1} and 741/{) are analytic in {£] > 1, so too are
g{{, 1), and gx({, 1), except at infinity, where ¢, has a simple
pole; i.e., it grows as £. Since (20) has a form analogous to a
first-order hyperbolic system in the complex plane (although
in reality it is a nonlinear integro-differential equation with
coefficients ¢, and g, that depend nonlocally on z), the analytic-
ity of g, and ¢, has important consequences on the presence
and motion of singularities of z. For the convenience of the
reader, we provide a summary of what is known ([25], [35],
[43]):

1. There is no spontanecus generation of singularities in the
finite complex plane. Furthermore, the form of a singularity
which is present initially in the region || > 1 is invariant with
time. Singularities which are present initially at infinity do not
more to a finite { location.

2. We define a “‘characteristic’ in the { plane by

L)

h—d[_ - _511(fr(i)= t)' (21)
Let £(1) = R.(t) ™, then
R, &) qu(d), r)}
—“=Rej>—=t = —Re{———"t. 22
. e{a(r)} e{ L) (22)

Tanveer [43] has shown that the right-hand side of (22) is less
than zero when |/,| > 1. Consequently, ‘‘information’’ outside
of the unit disc flows inward toward |{| = 1.

3. This is particularly true for isolated singularities of the
form (1). The location of these singularities satisfies (21); Le.,
they move with speed —g,((¢), 1), so they move towards the
unit circle, Incidentally, the singularity in z which is present
initially at £ = 0 does not move in time, since the characteristic
speed at £ = 0 (given by ¢,(0, 1)) is zero.

4. Singularities with @ > —% reach the unit circle in finite
time, Singularities with v = —% come indefinitely close to, but
never reach, the boundary |Z| = 1.

Several properties of zeros in z; are also relevant. For exam-
ple, there is no spontanecus generation of zeros of z; in the
finite complex plane, although zeros which are present initially
at infinity can move to a finite { location. When a zero impinges
on [¢| = 1, it produces a zero-angled cusp in the shape of the
interface; see Howison [19, 20] and Shraiman and Bensimon



WELL-POSED NUMERICAL CALCULATION FOR HELE-SHAW FLOW

{391 for exact solutions where this happens. There is no physi-
cally sensible way of continuing the solution in time. Unlike
singularities, the zeros of z; do not move generally with the
characteristic speed —g; and it is hard to predict if a given zero
will hit the unit circle or stall at a finite distance from |¢| = 1.

In this paper, our interest will be focussed on initial condi-
tions containing only isolated singularities of form (1) with
a < —4, so they do not reach [¢] = T in finite time. We shall
also pick cases where zeros in z; do not reach |¢{| = 1 during
the time of our computations, For these cases, the inclusion of
surface tension acts in a regular perturbative manner, so the
results indicate what can be expected in the limit of weak
surface tension.

3. EXPLICIT TREATMENT OF SINGULARITIES

Baker and Tanveer [4] use (20) to solve directly for z({, ¢) on
a circle in the ¢ plane of radius R(¢), assuming that this circle
does not contain a zero of z; or a singularity of f({, ) =z — i +
(2/m)ln {. The advantage of computing the evolution of f(¢, t) on
the boundary || = R(¢) is that during the process no singularities
in z; will be introduced in || = R(¢). Of course, singularities in
z;may be present outside {{| = R(r), but as long as R(¢) shrinks
fast enough, singularities will not intrude into || < R(¢); the
presence of zeros must be checked separately. Furthermore, a
function which is analytic in |{| = R(f) can be determined
throughout this region from its values on |¢] = R(¢) through eval-
uation of its Taylor series—this step is well-posed as demon-
strated in the next section, Thus, the intertace, z({g | =1,1), can
be recovered from the solution on [{| = R(r).

Unfortunately, R(t) must shrink faster than the approach of
any singularity to |{| = 1. Consequently, the computation may
terminate (when R = 1) before any interesting structures have
developed on the interface. For initial conditions containing iso-
lated singularities of form (1), this obstacle may be removed by
explicit treatment of the singularities. In this section, we derive
equations in which singularities in || = 1 are treated explicitly;
they are in a sense “‘subtracted’’ from the data and evolved sepa-
rately. In the next section, we show how the resulting equations
can be solved in an efficient and well-posed fashion.

For initial data containing singularities of form (1) in |{] >
1, the solution may be written in the form

4 a1
a0 = _EEf‘(g,r)(l - _g_)
=1

&)
J ] ) é’ aj.+l
AR @
T __L _2
+ EX(¢, t)(l _{,(I)) ] + Gt 7Tln Z

where || > 1; a; are real constants (excluding 0, 1, 2, ...); and
B(g(0), 0) # 0. Here ((¢) forj = 1, ..., J, mark the location
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of singularities on the real line, and {;(t) forj =1, + 1, ., J
indicate singularities with non-zero imaginary part. In order to
satisfy (3), the amplitudes F4(¢,-1) for j = 1, ..., J, must be
real. The amplitudes E/(Z, ¢) forj = J, + 1, ..., f are, in general,
complex. Conjugate singularites Zj(t) with amplitudes E«(Z, t)
are included to satisfy condition (3). The branch cut is chosen
so that the argument of (1 — {/{) lies between 7 and —1; we
have chosen this form to simplify the numerical evaluation of
the interfacial location when |} = 1. In the region || > 1,
there can be other singularities at { which are not expticitly
represented. However, it is assumed that the {; are the nearest
singularities so that, given i, the inequality |f| > R() > ¢!
holds for all j = 1, ..., J. The functions EX(¢, ¢t} and G(, 1)
are analytic in the annulus 1 < 7] = R(#). If all singularities
are explicitly represented, these functions are analytic in the
entire region exterior to the unit disk. Unfortunateiy, it is possi-
ble for £/ and G to have singularities in |{| < 1 which cancel
in (23) so that z + (2/7)In { is analytic in |¢] = 1,

In order for (23) to be a solution to (20), ¢, EV, and G
must satisfy

g _
il q{ (). 1)

El—q Ef=(o;+ )E

gl& 0 — (g 0y g, z)} )
{ {— ) &) =

(24)

2
G—qG=——a+q.

oy (26)

In the case of initial data with logarithmic singularities (poles
in z;) the solution has a modified form,

v L
21y = ;E (£, )In ( g(r))
- {

+ f=1§;+1 [E (&, 1) In (1 - L(I)) 27
Ei — L WZ

+E(§,r)ln( Ej(r))] + G 1) 171n £

where

d_ ”
i @&, 1) (28)
Ei— qEr=0 (29)

J
G,*q](;g:(j"z“‘EEj
=1

Q&N = g1 alg, t)}
{ = i | Y
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Of course, it is pessible to have a combination of the two forms,
(23) and {27).

Our numerical method is based on (24)-(26) or (28)-(30);
in the next section, we describe how the solution may be updated
in a well-posed fashion.

4. NUMERICAL METHOD

Our numerical treatment is a combination of tracking the
positions of the singularities by solving (24) (or (28)) and of
advancing E{{, ¢y and G({, #) in time by the method of lines.
Despite appearances, it is not necessary to update E/({, t), and
G({, 1) throughout the computational domain, an annulus 1 =
I¢] = R(r). Knowledge of these functions on the circles |{] =
I and |{] = R(¢) is sufficient to determine them everywhere
inside the annulus. Nevertheless, we must use a special proce-
dure to update EX{, ¢) and (¢, £} in a numerically stable way.

We introduce a decomposition for a function g({) which is
analytic in the annulus by writing it as the sum of a function
g+{¢) which is analytic inside a circle |{| = R and a function
g-(£) which is analytic outside the circle [{] = 1. The decompo-
sition is made unique by requiring g.(0) = 0. By considering
the Lavrent expansion for g({), we note that

G
g-(y=2 &l

k=—rc
w

gL = kZ_I &L

(31)

32)

where the Taylor series for g.({) will have a radius of conver-
gence R, > R and the Laurent series for g_(¢) will converge
outside |¢| = R_ < 1. We call the function g, inner analytic
and the function g_ outer analvtic.

An important feature of an inner analytic function is that its
values inside a closed curve can be determined from the values
on the curve in a well-posed fashion. To see this, consider an
inner analytic function g.(¢{) evalnated on a circle of radius R.
Let { = Re'®; then

0

g:(8) = > gRke™.

k=1

In practice, the coefficients g, R* are obtained by the discrete
Fourier transform. Since the sum converges, these coefficients
must decay with increasing & There will be a value, &, say,
where the coefficients reach the roundoff levels of a computer.
If sufficient resolution is used with the discrete Fourier trans-
form, then the coefficients with £ > k. will contain roundoff
levels and not their actual values. This has important conse-
quences when we wish to evaluate g, on a different circle
i = re™, Then

= k
g.0)=3 (;’;;) BeRe™,
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so each coefficient §,R* is multiplied by r*/R* prior to vsing
the discrete Fourier transform again to evaluate the sum. If
r > R, then roundoff errors in g, R* for k > k, will be significantly
amplified, even to the point that all accuracy in g.(¢ = re')
will be lost. However, if r = R, roundoff errors are decreased.
For an outer analytic function the situation is reversed; evalua-
tion on r = R (here we will take R = 1) is numerically stable,
while on » << R it is not. The exception to our statements is
when there is a known, finite number of terms in (31) or (32)
with amplitudes well above roundoff levels. Then the relative
errors in the evaluation of g, or g. on any circle remains small
when we use only the finite number of terms.

4.1, Basic Algorithm

We decompose both £¥({, ) and G({, ¢) into inner and outer
analytic parts and use the method of lines to update £V, G,
on |{| = R, and EL, G_ on |{| = 1. We obtain evolution
equations for these quantities by applying the projection opera-
tors, H.f = f. and H_f = f_. Thus, from (25) and (26), we have

EL = AR 0} (33)

= H-{qlEf'g + (e + 1)

g, 1) — q(@), 1) g, f)) J}
( I to )Y

G, = ?f{q.G; - w%ql(a, 1+ g f)}-

(35}
Before giving the results for the other components, we note
that ¢, and ¢, have very simple decompositions. From (16)
and (17),

g, 1) = LGt} + g1, (36)

where g,, = {§,(¢) contains only one term, whereas (18) shows
that g, is outer analytic only:

@& 1) =g (37)

The form of the decompositions {36) and (37) is very beneficial
in our design of a well-posed algorithm. For example, we use
the facts that the product of E7, with g, and the product of
EL with [qi(d) — q (&1 — &) resull in only outer analylic
parts to simplify the %, projection of (25):

£l = HARAL )

= %f{qlEa; + (o + 1) (38)
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(ql(a, 0= alg),0) _ ald, t)) . }
(-4 Gy )

The resulting equation for G, simplifies to

G = %+{QLG+(} (39)

when we use the facts that —2¢./(n{), g, and .G, are
outer analytic.

The following properties can be easily deduced from (34)—
(35) and (38)-(39):

1. The evolution of EX does not depend explicitly on E..
As a result, iff E/({, O) satisfies E4(Z, 0) = 0, then E/{{, 1) =
0 for all £. The same result holds for G+(Z, ).

2. 1f E/(, 0) contains a finite number of modes in (32) with
highest wavenumber & = M, then no modes with wavenumber

k > M will be generated in EL({, r). The same result holds
for G,.

Similar results hold for the decomposition of £/ and G in
{29) and (30} for logarithmic singularities.

To apply the method of lines to (34)—(35) and (38)-(39),
we assume that we know EY, and G, at N evenly spaced points
on the circle r = R(1), and E.. and G_ at N evenly spaced
points on the unit circle, Actually, it is not necessary to use
the same number of points on both circles, but we make that
assumption for ease of presentation. First, we describe how to
evaluate the right-hand side of (34) and (35) on the unit circle.
For the moment we agssume that g; and ¢, are known there; we
describe their computation in detail in the next subsection.

We compute the coefficients ¢, R* in the representation

Ni2

Ei(l = Re®, 1) = 2 c;R'e™
k=1

by use of the discrete Fourier transform. The coefficients ¢, are
obtained by a division by R* and then used to evaluate
El and EY,; on the unit circle by use of the discrete Fourier
transform, where

N2

B.({0)= > kel 40
k=1

The function EL is also determined on [{| = 1 by using the
discrete Fourier transform. Then we have all the information
needed to evaluate R\ in (34) at N gvenly spaced points on the
unit circle. To execute the projection J_, we use the discrete
Fourier transform to calculate the coefficients in the represen-
tation

Ni2

R(L1) = kE Rl
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Then we set to zero all the coefficients with & = 1. The result
is an outer analytic function, which is the forcing term in (34).
Balance of the Fourier coefficients of like modes on the left-
and right-hand sides of (34) then yields a set of equations

aky
-dr_(t) = F(1) ’

for the Fourier coefficients £i(2) (k < 0) of £.. In an equivalent
procedure, we may use G, known on r = R(t), to determine
G, and use G, known on the unit circle, to get G_,. Then
the forcing term for (33) is computed by executing the projec-
tion #_ as described above.

From our discussion on the importance of ‘‘characteristics’’
defined by {217, we anticipate that EX and G, must be evaluated
on a circle with a radius that is collapsing at rate

léE = — max Re{-—*—*%(g’ t)}
R dt {¢l= ) '

40
Then, information outside the circle |¢] = R(r) will not cross
the boundary into the annulus, 1 = |} = R(z). We include an
advection term that accounts for the change in £% due to the
change in R(¢); thus (38) becomes

dEy,
dt

- %{Rz(; n+EL8 EJ;:}. “2)

R dt
A similar term is needed in Eq. (39) for G, .

We will describe in detail in the next subsection how g and
g, may be evaluated on |Z| = R(¢). The quantities Ei, .G, can
be evaluated by spectral techniques as described in (40). The
expression contained within brackets on the right-hand side of
{42) can then be evaluated. The Fourier coefficients of the
right-hand side of (42) are obtained using the discrete Fourier
transform, and the projection 3, is done by zeroing all modes
with & = 0. Equating like Fourier modes then leads to a set of
evolution equations for Ei(1), the Fourier coefficients of £,
for k > 0. The same procedure may be used on the equation
for G5..

Any suitable ODE solver may be applied to the evolution
equations for §;, £ and G,. For the results used in this paper,
we use the standard fourth-order Runge—Kutta method with
fixed step-size.

Since z(Z, ¢) + (2/7}ln { has a Taylor series expansion about
¢ = 0, all the negative terms in the Laurent expansion for G (£,
t) must cancel all the negative terms in the Laurent expansions
of the sums in (23). This will be only approximately true in the
discrete calculation, so it can be used as a check for numerical
accuracy. Although it is not necessary to compute G_({, 1)
to update the interface, we have done so in order to employ
this check.

For certain initial conditions, our algorithm is greatly simpli-
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fied. For example, when Ef has only a few terms in its Taylor
series expansion, then it is possible to write down by hand the
evolution equations for the Fourier coefficients, F4, since the

products
(q 1

will contribute only a few terms due to the simple decomposi-
tion (36) for g,. In particular, if £, EL .G, , and G_ are time-
dependent constants in £, then only EL need be computed.

qild, 1) —ql g, 1) i

= 40 "

LaRY L
Lt

4.2. Computation of g, and g,

Here we provide details of the computation of ¢, and ¢, in
|£1 = 1 by using (13), (17), and (18). First, we calculate £ (¢,
1), ELdZ, 1), and EL((, ) on |£] = 1 by means of the discrete
Fourier transform as described in the previous subsection. These
values are used to compute 1/z{) = p({ WD) on || =
1, where

2P
D)y = — P:;éf)
*Ep,o(e“) [(aﬁ~ 1) é Efg(g)( )]
(43)

i

-2 poj(c)[(a +EO Elg({)( £)}

i=T+ { ¢
T GL) pu(D)
and

J

p,5(5)=1'1( ~§) m (1 —zﬁ)

i=1 =i+l
i#Er I

This form for 1/z4¢) is obtained by differentiating (23) with
respect to £, then factoring out 1/py({) and taking the reciprocal.
We have found it necessary to compute 1/z,{Z) using this expres-
sion to obtain accurate results for ¢, when singularities are very
close to || = 1. The function 1/7(1/¢) can be computed on
|£] = 1 by taking the conjugate of 1/z4¢). Consequently, the
function ¢, can be computed on the unit circle using (18).
The function g, is computed as follows. We write

2

T DD “h

=dy+ i (dl* + ak‘:fk)
=

on { = ¢% We determine approximations to the N coefficients
{d\, ..., dun}, {d,, ..., dyn} by means of the discrete Fourier
transform. Upon substitution of (44) into (13) and computation
of the residues, one finds that
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NIZ_
g = —g[a'o +2 ; d, g-*].

. (45)

Note that 4, is real (i.e., c_iJ = dj) for the channel geometry, as
a consequence of z being real along the real axis of {. The
functions g, and g, can be analytically continued out to the
circle [¢| = R(#) by the ideas expressed in (40). Similarly, g,
can be evaluated at the location {(¢) of the singularities.

4.3. Computations for Extremely Close Singularities

Many of the interesting interfacial features revealed by our
calculations occur when singularities approach the unit circle
within a distance much less than machine precision. To track
these singularities reliably when they are that close to the unit
circle we must express their location as

5=+ 8.

The time evolution of the quantities 8;(¢) and A{ry = 1/§; are
then determined numerically using the equations

dt = AfRelqi(g;, e

df

AT
We use A; instead of & so that singularities can be allowed to
come extremely close without the worry of them jumping inside
the unit circle due to time-stepping errors.

The computation of g, t} is more delicate when ¢ is
extremely close to the unit circle, since the quantities

1
gt a+ gy

in (45) wiil be approximated as 1, leading to inaccuracies in
the computation. In order to obtain a better value for 1/
we write

1 5
T+5 | Tve | T/H@
and compute fi(8,), defined by
— =1+
0+ 1+ f(8), (46)
using the recursion
() —
fig) A0

l+§
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The substitution of (46) into (45) then yields g/(g, 1) =
qi(e’, 1) + dq (L, 1), where

N2 _ »or 4
8q({;, t) = —e" (5}0-'0 +2 ; dl 81 + f) +ﬂ]€"“’f)- (47)

Then,

{(48)

L’mf

el ) =g el

where we have used

Re{ql(; I)} -~ 2
4 7z A{)z1/)

when [§| = 1, which follows from (13} and (17). By using
{48), we avoid any problems with roundoff eirors. On the
other hand, Im {g,/{} is computed with g, directly determined
from (47).

5. NUMERICAL RESULTS

We use a known exact solution due to Saffman [37] to help
validate our method,

{L D) = H—d(r)—%lng”r%ln(l Haf;)), (49)

where 1 < af() < oo, The functions ¢{t) and a(#) are deter-
mined by

atr) = [1 + Ke "

and
|
d =K, + 2+ Eln [1+ K.e ],

where K, and K, are constants which are determined by the
initial conditions. From (49), it is clear that z; has poles at
£12 = X alr), but no zeros. The form of the initial data (27)
used in our numerical method is made to correspond to (49)
by setting £ ({, 0) = E (¢, 0y = U/m and G(£, 0) = i + 4(0).
We pick d(0) so that the initial profile has zero mean height.
The functions £/, t) and G(£, t) are constants in { for this
problem, and therefore only a single Fourier mode (namely the
constant mode) is necessary to specify them. Nevertheless, we
use 512 modes in our computation in order to check the numen-
cal stability of our algorithm for computing £/(Z, t) and G(£, 1).

The resuits of our numerical method for a(0) = 2.0 are

357

1T T — T ™ T

-4 L

FIG.2. The A =48affman-Taylor finger. In this and each of the subsequent
figures the viscous fluid region lies to the right of the curve. The profiles show
the position of the interface from ¢ = 0 to t = 3.0 in increments of .2.

shown in Fig. 2. We use a time step of Ar = 0.005. At ¢ =
3, the calculation gives the positions of the poles as {|; =
+1.0000000244216, whereas the exact positions are {;; =
+1.0000000244215. Although the difference is less than 107",
the exact and the numerically computed profiles differ by only
a little less than 1075, However, we find no growth of roundoff
errors in the modes comprising E4{, ) and G(£, ). In this
example we set R(0} = 2000 and stop the calculation at ¢t =
3 when R is nearly 1. Because there are no zeros in z; we can
take R(0) much larger and run for even longer times.

There are no known exact solutions for channel geometry
when branch point singularities are located in the region || >
I (although exact solutions with branch point singularities have
been found for sector geometry; see Tu [47]). We replace
the two pole singularities in z, of (49) by two branch point
singularities of equal power and ampiitude and locate them
symmetrically on the real axis of {. Our choice is motivated
by the desire to understand the role of the power of a singularity
in z; on the shape of the interface. Thus we select initial data
corresponding to (23) with J, = 2, &) = &, and {{0) = — 5(0).
In Fig. 3, @ = —% and in Fig, 4, @, = —3%. Initial values

>0

-1
0.5 25

FI1G. 3. A finger produced by two branch point singularities of strength
a = —4, located at symmetric positions on the real line. The profiles show
the position of the interface from f = O to r = 0.8 in increments of 0.1, and
at + = 0.85. In the last profile (+ = 0.85) the singulanties are located at {; =
—¢ = 1.00BI.
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for the singularity positions (0} and amplitudes E/(¢, 0) are
determined through experimentation; those that lead to solu-
tions in which the interface becomes well deformed before
zeros impinge on the unit disk are selected for presentation. In
this manner, the initial singularity positions and amplitudes are
chosen as {(0) = —&(0) = 1.2, ENS, ) = EXL 0y = 1.94
for Fig. 3, and {i(0) = —4(0) = 3.3, EXL 0) = EXZ, 0) =
—2.2 for Fig. 4. In these and all subsequent computations we
set G({, 0) = i + ¢, where ¢ is a real constant selected to
produce an initial profile with zero mean height. Recall that
for constant initial data such as this, only negative Fourier
modes in E! and G are generated. Consequently, we only need
to solve Eqs. (34) and (35). The positive Fourier modes are set
to zero after each time step in the calculation. We use 512
points on the unit circle in the ¢ plane and a time step of
At = 0.0005.

We check our numerical results by comparing them with the
results obtained when none of the singularities outside the unit
disk are represented explicitly. To perform the latter calculation,
we use the code to solve for G,(4, ) + Gy(t) on a circle of
radius R(¢) that is closer than the smallest |¢,(?)|. Consequently,
we shrink the radius R(#} as described in Section 4. While the
calculation must be stopped before long because R = 1, the
output provides a useful check on the present resuits for some
period of time. In addition, we decrease the time step and
increase the number of modes until there are no detectable
differences in the solution within plotting accuracy.

Unlike the previous example, we cannot be sure that zeros
do not approach the unit disk. So we monitor the presence of
zeros by computing the integral

M= o =1 z; 0)

which, according to the argument principle, equals the number

FIG. 4. A finger produced by two branch point singularities of strength
o = —4, located symmetrically on the real line. The profiles show the position
of the interface from ¢ = 0 to r = 1.1 in increments of 0.1. In the last profile
(r = 1.1} the singularities are located at £; = —¢, = 1.0054.
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FIG. 5. Plot of log| £'¢k)| versus —k for the computation in Fig. 4. The:
plots range from ¢ = 0 to ¢ = 1.1 in increments of 0.1. Only odd values of &
are plotted, since the values of E'(k) for even k are zero by symmetry ( in the
computed spectrum these values remain at roundoff levels). The values of
EV&) for k = 1 are identically zero.

of zeros minus the number of poles of z, inside the unit disk.
As long as there are no zeros of z, in |¢| = 1, this integral will
equal —1, due to the simple pole of z; at £ = 0. For the results
presented in Figs. 3 and 4, the value of N, remains within 1%
of —1 throughout the length of the computation. Note further
that if a zero in z; is located near the unit disk, the close presence
of a pole singulanity in the integrand of (50) causes a loss of
accuracy in its numerical evalouation. Thus we feel confident
that no zeros are very near to the unit disk up untl the times
of the final profiles in Figs. 3, 4, and 3.

The contrast between Figs. 3 and 4 is quite striking. The
higher value of @ = —#% in Fig. 3 correspond to a singularity
of weaker effect in that the bulge of fluid at the base of the
finger is less rounded, causing a finger that is more pointed.
The lower value of @ = —§1n Fig. 4 produces a more spherically
shaped bulge of fluid, causing a thinner neck at the base of the
finger. In general, our experiments with various powers ¢ show
that for powers & > —1, more pointed fingers are produced
from the less pronounced bulges of fluid at their bases. For
a << —1, the fingers have parallel sides, but their bases have
thinner necks as a consequence of more spherically rounded
bulges of fluid there.

A representative Fourier spectrum from the calculation with
—4% is presented in Fig. 5. There is no sign of spurious
growth in the large k| modes or any other indications of numeri-
cal stability, although it is necessary to evaluate g, using expres-
sion (43) in order to avoid such growth. The rise in the tail of
the spectrum with respect to time is due to singularities in the
functions E/, G, q,, and ¢, at positions { = 1/{, and { = 1/,
inside the unit disk. Since z — (2/m)In { is analytic in [{] <
1, the singularities in £/ and G must cancel out in the expression
for z(£), (23). Nevertheless, these singularities do affect the
numerical computation of the quantities F¥, G, g, and g,. Since
the singularities move toward £ = %1 from inside the unit disc

o0 =
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FIG. 6.
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(a) Comparison of B = Q and B = (.00025 solutions for data with two branch point singularities of strength & = —3.2 located on the real line,

and with zeros of z; initially at infinity. The two solutions are indistinguishable at plotting resolution. The profiles are shown for ¢ = 0 1o+ = (.5 in increments
of 0.1. (b) Comparision of B = 0 (solid line) and B = (100025 (dashed tine) solutions for the inttial data of Fig. 4. The profiles are shown fort = 0 to =

1.1 in increments of 0.1.

as {1 —» =1 from the ouiside, a large number of Fourier
modes are required to obtain accurate representations for these
quantities when the singularities are very close to the unit circle.
Another consequence of the close approach of the singularities
to the unit circle is the need for much smaller time steps to
maintain accuracy. This is also true when zeros in z; get close
to the unit disk. In general, it 1s either the close approach of
singularities in £/ and G or zeros in z; to [{] = 1 that force us
to terminate our calculations.

If we ignore the loss of accuracy, we can continue the calcula-
tions shown in Figs. 3 and 4 a little further in time. We sece
evidence that zeros are impinging on the unit disk. For the
calculations associated with Fig. 3, a zero is approaching
|¢] = 1 at a point corresponding to the tip of the finger. Thus,
we expect the finger to form a cusp in finite time. For Fig. 4,
two zeros approach |{| = 1 at points corresponding to the tops
of either side of the finger, so we expect cusps to form at these
positions. Asymptotic theory suggests that the initial zeros will
give rise to localized clusters of —3F singularities (davghter
singularities) when 0 << B <€ 1. The leading order moticn of
each of these clusters satisfies Eq. (21), i.e., a cluster located
at {, moves with speed —g,(,(1), t). If such a cluster comes
close to|£] = 1, it can cause the interface to deviate significantly
from the 8 = 0 solution,

We briefly consider the influence of non-zero surface tension
on interfacial shapes by comparing the zero surface tension
solution to that for small surface tension. The non-zero B solu-
tion 1s obtained using the boundary integral method developed
by Hou, Lowengrub, and Shelley [17]. In the first case {Fig.
6a), we consider initial data with zeros of z, initially placed at
infinity, and with singularities which satisfy «; = —4.* The

* This is accomptished by prescribing initial data in z, of the form z.(Z, 0)
= =1 — f/{})"!{ng‘,’). Here we use @ = —3.2 and £, = (1.6, 0.0).

value of surface tension is set to B = (.00025. From asymptotic
theory, it is expected that the addition of a small amount of
surface tension will make little difference in the evolution of
the interface for at least O (ln B) time. The actual agreement
between the interfacial shapes is quite remarkable; the two
solutions are indistinguishable over the entire length of the run.
The agreement 1s unaffected by using real singularities which
only satisfy e, << —3, since these singularities behave as though
they are essentially unaffected by capillary effects for the time
of the computation.

In contrast, when the initial data of Fig. 4 is used, the differ-
ence between the B = 0 and B = 0.00025 shapes is very
significant. As seen in Fig. 6b, the B > 0 finger eventuaily
diverges from the corresponding zero surface tension solution
and approaches a broad, steadily propagating finger. The broad-
ening is apparently caused by the approach of daughter singular-
ities created from an initial zero in |§ | > 1 (see [40]).

The above examples show that, in some cases, surface tension
causes a singular perturbation in (1) time, whereas in other
cases it does not. Our method gives us a means of discerning
these cases through computation of daughter singularity trajec-
tories in the extended domain {43]. We remark that our attempts
to calculate the B = 0 sclutions using the boundary integral
method with filtering failed before the mterface had advanced
very far. This is because the close presence of strong singulari-
ties causes fast growth of the high wavenumber modes, and
nomerical noise quickly contaminates the computation. Thus,
boundary integral methods often appear unsuitable for compar-
ing B = 0 solutions to those for B > 0 over times in which
the interface becomes significantly deformed. Dai and Shelley
[8] report related problems in B = (} calculations, as discussed
in the Introduction,

We turn now to a consideration of the influence of additional
—4% singularities with weak amplitudes during finger formation.
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Figure 7a illustrates the interface evolution resulting from initial
data of the form (23) with J; = 2, J = 3 and with singularity
strengths o = —3 for j = 1, ..., 3. The initial singularity
positions were chosen as {i(1) = — &) = (1.65, 0.0), and
&H(1) = (—0.6, 1.83), and the initial amplitudes as E'({, 0) =
EXNL, 0 = (—0.9, 0.0), and E3¢, 0) = (—0.01, 0.03). The
calculation uses N = 512 points and a time step At = 0.0005.
Two of the singularities ({; and £,} reside on the real line, and
these have large enough amplitude to produce the wide bulges
of fluid centered at y = 1 and y = —1 which define the main
finger. As the third singularity approaches the unit disk, it
generates a small bulge of fluid that gives the appearance of
the formation of a dimple on the evolving finger.

The dimple is clearly stationary in the laboratory frame,
despite the overall growth of the main finger. Such behavior
has been well documented in laboratory experiments (e.g., [28,
41]) and in numerical calculations (e.g., (9, [0]) with B # C.
Our results show that it is the specific nature of the trajectory
of the singularity £5(¢) that accounts for this behavior, We show
the trajectories of all the singularities in Fig. 7b. At first, a
dimple starts to form as Z;(t) approaches the unit disk. As £3(¢)
begins to move around the boundary of the unit disk towards
{ = —1, the dimple continues to grow but remains stationary
in the laboratory frame. With the assumption that the singularity
is close to either { = £ 1, we can show that its speed is actually
the correct speed for the dimple to remain stationary in the
laboratory frame. Details will be provided elsewhere. The point
to be made here is only that certain physical properties can be
understood in terms of the motion of singularities in the complex
{ plane, Under the presence of surface tension, the narrow
finger will eventually widen; however, the formation of the
dimple and its relationship to the motion of the singularities
will not be affected.

Placing additional singularities in the complex plane pro-
duces additional dimples and leads to the appearance of side-

FIG. 7.
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branching. An example of side-branching due to multiple pole
singularities 1s given in Fig. 8a. We use pole singularities,
rather than @ = —3% singularities, since our ability to track
them arbitrarily close to the unit disk leads to a more dramatic
example of side-branching, but in reality side-branching is more
likely to occur from the patterns of —% singularities created by
the initial transformation of zeros in z;. Initial data correspond-
ing to (27) with J, = 2 and J = 14 is used to generate the profiles.
The starting amplitudes £,;({, () and singularity positions £(0)
are given in Table 1. The two main singularities £, and {;
produce the finger centered in the channel, and the remaining
singularities ¢; for j = 3, ..., J of smaller amplitudes are located
to cause side-branches to form near the base of the finger.
Additional singularities can be placed to allow side-branching
to run the length of the finger. As expected, the dimples and
the corresponding side-branches are stationary in the laboratory
frame. The motion of the singularities is shown in Fig. 8b, and
clearly the singularities with smaller amplitudes are attracted
to the points { = *1. When they get close enough to either
of these points, an unperturbed finger continues to grow while
the dimpiles remain near its base. If additional singularities are
present that start much further away from the unit disk, they
will arrive close to the unit disk at later times, producing new
dimples near the tip of the finger. The endless presence of
singularities streaming in from infinity can generate fingers
with side-branching patterns seen frequently in experiments.
In Fig. 7a, the small amplitude of the singularity at {; causes
the formation of a small dimple on the side of a well-developed
finger. In contrast, when Re E’ is the same order as Re E' and
Re £, the close approach of ; to || = 1 leads to a *‘tip-
splitting”’ event and the formation of two fingers which eventu-
ally compete. An example is given in Fig. 9a for initial data
of the form (23) with J, = 2, J = 3, and o, = —3 for j =
L, ..., 3. The initial singularity positions are chosen as £(0) =

2 i L L L L 1 L
-2 -1.5 -1 -0.8 0 Q.5 1 1.5 2
Re zata

(a) An advancing finger with a side perturbation. The plots range from 1 = 0 to + = 0.22 in increments of 0.02. (b) The singularity trajectories

corresponding to (a). After reaching the unit circle, the (upper) complex singularity £ moves in a counterclockwise direction. In the last profile (r = 0.22),
the singularities are located at ¢, = 11522, § = —1.1542, and ¢ = (—0.9381, 0.3546).
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1% T r——T—r—T

FIG. 8. (a) An example in which the approach of small amplitude poles causes the appearance of side-branching. Here N = 512 and Ar = 0.01. The plots

range from + = 0 to ¢ = 1.2 in increments of 0.2. (b} The singularities trajectories corresponding to (a}.

—4H(0) = (2.5, 0.0), &(0) = (0.0, 4.0), and the initial amplitudes
as E\(£, 0) = (—1.0, 0.0), E{(, 0) = (—0.8, 0.0}, Ea(L, 0) =
(—0.3, —0.16). We use ¥ = 512 and Ar = 0.0005. As shown
in Fig. 9b, the singularities initially move radially towards the
unit circle. As the singularity at ¢; approaches || = 1, a dimple
forms near the finger tip. As time advances, {; gets closer to
the interface and the dimple elongates into a large indentation,
giving the appearance of two fingers. Eventually, the motion
of the singularity is predominantly tangent to the circle, and
the tangential velocity of {5 is such that the indentation is fixed
in the laboratory frame. The direction the singularity moves
around the circle determines which finger will dominate. In
this case the singularity at 5 moves towards £ = —1, Since
the point { = — | corresponds to the bottom end of the interface,

TABLE 1

Tnitial pos. (§)

Amplitude (E7)

Final pos. ()

(1.0019, 0.0) (0.38, 0.0) {1.00060005. 0.0)
(0.9559, 0.3622) (0.009, —0.03) (1.0, .00001)
(07526, 2.0281) 0.009, —0.03) {1.0. 00005}
(1.1293, 3.9949) (0.009, —0.02) (1.0, .0001)
(1.5949, 7.4623) (0.005, —0.02) (1.0, .0001)
{1.9544, 11.0262) (0.005, —0.02) (1.0, .0002)
{2.5063, 14.4187) (0,005, —0.02) (1.0, .0003)
(—1.2519, 44313} (0.005, —0.02) {1.0, 00038}
(—1.9393, 8.1623) (0.005, —0.02) (- 1.0, .0001)
(—2.7689, 12.0913) (0.005, ~0.02) (— 1.0, .0002)
{—0.9160, 2.2466) (0.009, —0.02) (1.0, .0003)
(—0.9438, 0.4012) (0.009, —0.03) (— 1.0, .00005)
{—0.9865, 0.1995) (0.009, —0.03) (—1.0, .00001)
{—1.0021, 0.0) (038, 0.0) (— 1.00D0000S, 0.0)

Note. The starting singularity positions Z(0) and the amplitudes E(Z, 0,
and the final singularity positions {;(t = 1.2) for the calculation in Fig, 7.

this motion has the effect of stretching the interface so that the
indentation separating the fingers lies closer to the bottom end.
The only way this can be done while also keeping the indenta-
tion fixed in the laboratory frame is for the upper finger to
grow significantly more than the lower one, as indicated in Fig.
9a. Unfortunately, the simulation cannot be run long enough
to produce a clear outcome in the finger competition, because
of the presence of the singularity in E. and G_ at 1/4L(2).
Nevertheless, we are able to compute long enough to make the
irend in singularity motion clear.

We conclude this section with a brief examination of some
scenarios which may lead to a self-intersection of the interface.
A self-intersection event is often referred to as a topological
singularity; the possible {ormation of this type of singularity
in Hele—Shaw flow and in other free surface flows is a topic
of much current interest. A topological singularity occurs when
the conformal map z({, 1) ceases to be univalent, i.e., when
two points on the { semi-circle map to a single point. When
this happens, either the more viscous or less viscous fluid region
is divided into two disjoint sections. Bertozzi, Brenner, Dupoint,
and Kadanoff [7] and Goldstein, Pesci, and Shelley [12] have
investigated possible topological singularity formation in Hele—
Shaw flow with surface tension. They consider a particular
geometry, consisting of a vertical cell with a thin layer of luid
resting on the bottom, chosen so that a variant of the lubrication
approximation can be applied. Using this approximation, they
concluded that in certain cases the top interface of the layer
touches the bottom of the cell in finite time. However, their
geometry and pressure conditions are significantly different
from ours and it is unclear if their results can be extrapolated
to our geometry, where there is a constant pressure gradient
far ahead of the finger.

In some situations, a loss of univalence is possible even
when the singularities and zeroes of zA¢Z, t) in [£] > | remain
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FIG. 9. (2) An illustration of tip splitting followed by finger formation and competition, due to @ = ~3§ branch point singularities. The plots range from

t =010t = 0.6 inincrements of (.2, and from ¢+ = 0.6 to 1 = 0.7 in increments of 0.02. (b) The singularity trajectories for the finger competition shown in

(a). The motion of the singularities is towards £ = —1.

a finite distance from |{| = 1. We used our code to search for
such an event in the zero surface tension problem. Unlike
commonly used boundary integral methods which run into reso-
lution difficulties when the interface is about to pinch (see
[31}, our numerical approach based on the conformal mapping
function will not incur difficulties as long as the pinching is
not accompanied by a singularity or zero of z; impinging on
=1

Unfortunately, we were unable to find any occurrence of this
type of singularity in the situation where a fluid of zero viscosity
displaces a viscous fluid. Of course, the formation of a topologi-
cal singularity in this case cannot be completely ruled out from
our limited examination and further study is required. When
we reversed the pressure gradient at infinity, however, so that
the more viscous fluid on the right of Fig. 1 displaces the fluid
of negligible viscosity on the left, topological singularities were
sometimes observed. It is well known from the Saffman and
Taylor [36] analysis that a planar interface in this situation is
stable and that any small deformation will reduce with time.
This can be expected to be true even for most finite amplitude
disturbances. However, our findings show that if the interface
is highly deformed initially, pinching can occur.

One such example is presented in Fig. 10. This figure shows
interfacial profiles before and after topological singularity for-
mation for an initial value problem with two branch point
singularities initially close to the unit disk. We picked data in
7 of the form z({, 0) = —2(1 =¥ 0 (wl), wherea = —1.9
and {, = (1.105, 0.0); with this choice, zeros in z; are placed
initially at infinity.* The change to liquid pushing air reverses
the direction of the characteristic velocities {given by g), and
the singularities move outward from the unit circle. Conse-

3 Thus, the presence of surface tension will not significantly affect the evolu-
tion of the intertace for the times shown.

quently, the evolution of the interface can be obtained without
explicitly representing the singularities. We therefore set z —
2/myIn ¢ = G, + G, and solve (39) on the circle |[Z] = &™;
there is no need to evolve the radius of this circle. In the run
we set N = 128 and Ar = 0.001.

Our example shows that a loss of univalency can occur in
zero surface tension flows without concurrent singularities in
zcand illustrates the ability of our numerical method to contend
with such self-intersections. The occurrence of these singulari-
ties appears to be quite sensitive to initial conditions, with fatter
initial fingers typically evolving to a flat sheet without pinching.
The form of the solution after a self-intersection remains an
open question.

6. DISCUSSION AND CONCLUSIONS

We have described a numerical method designed to track
singularities present in the conformal map from the unit semi-
circle to the physical domain of Hele—Shaw flow im a channel.
The method is restricted to these conformal maps that contain
singularities of the form (23}, and their initial location {(0)
and power o; must be given if they lie inside the circle of radius
R(0). Furthermore, their amplitude E/({, 0) and G (£, 0) must
be specified, or at least their inner and outer components must
be given on [{| = R(0) and || = 1, respectively. This detailed
information of the initial properties of the conformal map corre-
spond to high precision knowledge of the initial interface loca-
tion. Our numerical method then advances the conformal map,
and hence the interface, numerically in a stable way. In other
words, roundoff errors do not contaminate the high precision
specification of the interface location.

Besides the restrictions on the initial conditions, there are
two other himtitations on our method. Singularities in inner
analytic components of E/(Z, t) and G({, 1) occur inside the
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FIG. 10. A topological singularity obtained using branch point initial data.
The plots correspond to ¢ = 0 (the rightmost curve) and ¢ = (1.08. Although the
code runs past the self-intersection, the solution no longer has physical meaning.

unit disk at 1/Z(t). As {;(+) approaches the unit disk, these
singularities also approach the boundary of the unit disk, and
cause slow decay of the Fourier modes for E(Z, ¢) and G({,
t). Consequently, we need many Fourier modes to ensure rea-
sonable accuracy. Also, at present the method is limited to
B = 0. When B # 0, zeros in z; are transformed into patterns
of —3 singularities. Some of these can move toward the unit
circle and affect the shape of the interface at later times. Never-
theless, as long as ; = —3% and none of the singularities formed
out of initial zeros approach the unit disk closely, our results
will be the correct limiting behavior as B — 0. Perhaps more
importantly, our method enables accurate 8 = 0 computations
to be obtained for quite a general distributions of initial singular-
ities, so that comparisons with B > { solutions can be made.
These kind of comparisons complement the asymptotic theory,
and facilitate an understanding ot the influence of small capil-
lary effects.

Despite the limitations, we find singularities induce interfa-
cial structure that is typical of experimental observations when
B is very small. In particular, two singularities, placed on the
real axis on either side of the unit circle, induce formation of
a long finger. Singularities off of the real axis induce small
indentations on this finger if their amplitudes are small, giving
the appearance of side-branches, or large indentations if their
amplitudes are comparable to the ones on the real axis, giving
the appearance of tip-splitting and finger competition. In gen-
eral, we expect that a continual inward stream of singularities
of all amplitudes can account for multiple branching and compe-
tition as observed experimentally. Although some aspects of
interfacial evolution due to multiple singularities have been
examined previously by Howison [19] using a class of exact
solutions for simple pole singularities, our algorithm allows
a broader study to be undertaken for collections of isolated
singularities of more general form.

We plan to continue studies of the properties of the singulari-
ties and the interfaciat structure they induce. For example, we
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wish to explore what role the complex amplitudes have con the
trajectories of the singularities, We hope to find ways to repre-
sent the singularities in better forms that may remove some of
the limitations in our method, and we hope to find ways to
capture the transformation of zeros when B is very small, but
non-zero,
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